jointseg
packagejointseg
package to partition bivariate DNA copy number
signals from SNP array data into segments of constant parent-specific
copy number. We demonstrate the use of the PSSeg
function
of this package for applying two different strategies. Both strategies
consist in first identifying a list of candidate change points through a
fast (greedy) segmentation method, and then to prune this list is using
dynamic programming [1]. The segmentation method presented here is
Recursive Binary Segmentation (RBS, [2]). We refer to [3] for a more
comprehensive performance assessment of this method and other
segmentation methods.
segmentation, change point model, binary segmentation, dynamic programming, DNA copy number, parent-specific copy number.
Please see Appendix for citing jointseg
.
HERE
This vignette illustrates how the jointseg
package may
be used to generate a variety of copy-number profiles from the same
biological ``truth’’. Such profiles have been used to compare the
performance of segmentation methods in [3].
jointseg
## To cite package 'jointseg' in publications, please use the following
## references:
##
## Morgane Pierre-Jean, Guillem Rigaill and Pierre Neuvial (). jointseg:
## Joint segmentation of multivariate (copy number) signals.R package
## version 1.0.2.
##
## Morgane Pierre-Jean, Guillem Rigaill and Pierre Neuvial. Performance
## evaluation of DNA copy number segmentation methods. Briefings in
## Bioinformatics (2015) 16 (4): 600-615.
##
## To see these entries in BibTeX format, use 'print(<citation>,
## bibtex=TRUE)', 'toBibtex(.)', or set
## 'options(citation.bibtex.max=999)'.
The parameters are defined as follows:
n <- 1e4 ## signal length
bkp <- c(2334, 6121) ## breakpoint positions
regions <- c("(1,1)", "(1,2)", "(0,2)") ## copy number regions
For convenience we define a custom plot function for this vignette:
plotFUN <- function(dataSet, tumorFraction) {
regDat <- acnr::loadCnRegionData(dataSet=dataSet, tumorFraction=tumorFraction)
sim <- getCopyNumberDataByResampling(n, bkp=bkp,
regions=regions, regData=regDat)
dat <- sim$profile
wHet <- which(dat$genotype==1/2)
colGG <- colG
colGG[wHet] <- hetCol
plotSeg(dat, sim$bkp, col=colGG)
}
## R version 4.4.2 (2024-10-31)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Etc/UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] jointseg_1.0.2 knitr_1.49 rmarkdown_2.29
##
## loaded via a namespace (and not attached):
## [1] digest_0.6.37 R6_2.5.1 fastmap_1.2.0 xfun_0.49
## [5] maketools_1.3.1 matrixStats_1.4.1 cachem_1.1.0 htmltools_0.5.8.1
## [9] acnr_1.0.0 buildtools_1.0.0 lifecycle_1.0.4 cli_3.6.3
## [13] sass_0.4.9 jquerylib_0.1.4 compiler_4.4.2 sys_3.4.3
## [17] tools_4.4.2 evaluate_1.0.1 bslib_0.8.0 yaml_2.3.10
## [21] DNAcopy_1.81.0 jsonlite_1.8.9 rlang_1.1.4
[1] Bellman, Richard. 1961. “On the Approximation of Curves by Line Segments Using Dynamic Programming.” Communications of the ACM 4 (6). ACM: 284.
[2] Gey, Servane, et al. 2008. “Using CART to Detect Multiple Change Points in the Mean for Large Sample.” https://hal.archives-ouvertes.fr/hal-00327146.
[3] Pierre-Jean, Morgane, et al. 2015. “Performance Evaluation of DNA Copy Number Segmentation Methods.” Briefings in Bioinformatics, no. 4: 600-615.